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ABSTRACT 

Past econometric studies have sought insight into the factors that affect 

military enlistment supply by creating models based on econometric theory and 

testing them with data in order to confirm their proposed theoretical relationships.  

The purpose of this study is to utilize factors common to previous research along 

with the additional factors of proximity to military installations and high school 

quality to build the best predictive model.  This study utilizes data from 2002 

through 2006 to predict high-quality male active-duty Navy enlistments at the 

recruiting station level.  This study shows that neural network models tend to 

predict the best, followed by regression-based models and then tree-based 

models.  The number of recruiters assigned per Navy Recruiting Station (NRS) 

and the male 17- to 19-year-old populations proved to be the most important 

predictive factors.  The number of houses, veteran population percentage, land 

area, percentage of high school students receiving subsidized lunches, Navy 

installation proximity and per capita were common to all predictive models.  This 

study also finds that NRSs closer to larger navy installations, having higher 

student-to-teacher ratios, having lower graduation rates (measured by 

“Promoting Power”) and having lower percentages of students on subsidized 

lunches exhibit greater high-quality male enlistment rates.   



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I. INTRODUCTION............................................................................................. 1 

II. LITERATURE REVIEW .................................................................................. 5 
A. ENLISTMENT SUPPLY AT THE LOCAL MARKET LEVEL ............... 5 
B. ANALYZING THE ASSIGNMENT OF ENLISTED RECRUITING 

GOAL SHARES VIA THE NAVY’S ENLISTED GOALING AND 
FORECASTING MODEL ..................................................................... 5 

C. ALLOCATION OF RECRUITING RESOURCES ACROSS NAVY 
RECRUITING STATIONS AND METROPOLITAN AREAS ................ 6 

D. A STATISTICAL ESTIMATION OF NAVY ENLISTMENT SUPPLY 
MODELS USING ZIP CODE LEVEL DATA ........................................ 6 

E. PREDICTING THE NUMBER OF POTENTIAL MILITARY 
RECRUITS OVER THE NEXT TEN YEARS WITH APPLICATION 
TO RECRUITER PLACEMENT ........................................................... 7 

III. MODELS......................................................................................................... 9 
A. REGRESSION ..................................................................................... 9 

1. Enter ....................................................................................... 10 
2. Forwards................................................................................. 10 
3. Backwards.............................................................................. 10 
4. Stepwise ................................................................................. 10 

B. TREE.................................................................................................. 11 
1. Tree:  C&RT............................................................................ 11 
2. Tree:  CHAID........................................................................... 11 
3. Tree:  Exhaustive CHAID....................................................... 12 

C. NEURAL NETWORK......................................................................... 12 

IV. RESULTS AND CONCLUSIONS ................................................................. 13 
A. RESULTS........................................................................................... 13 

1. Prediction Models.................................................................. 13 
2. Variables................................................................................. 14 

a. Importance................................................................... 14 
b. Relationships .............................................................. 17 

B. CONCLUSIONS................................................................................. 18 

APPENDIX A.  VARIABLE DESCRIPTIONS................................................... 21 

APPENDIX B. DATA....................................................................................... 23 
A. DATA SOURCES............................................................................... 23 

1. CNRC ...................................................................................... 23 
a.   Woods and Poole Economics, Inc............................. 23 
b. Zip Code and FIPS Mapping to Recruiting Stations. 23 
c.  Latitude and Longitude for Each Zip Code............... 24 
d.  Navy Recruiting Station Manning Levels.................. 24 
e.   Census Data ................................................................ 24 



 viii

2.   Defense Manpower Data Center (DMDC)............................. 24 
3.  U.S. Census Bureau .............................................................. 25 
4.  U.S. Department of Commerce ............................................. 25 
5.  U.S. Department of Labor...................................................... 26 
6.   U.S. Department of Defense.................................................. 26 
7.   U.S. Department of Education .............................................. 26 
8.   Alliance for Excellent Education .......................................... 27 

B. DATA PREPARATION ...................................................................... 27 
1.  Individual Data File Preparation ........................................... 27 

a.  U.S. Census Bureau.................................................... 28 
b.  U.S. Department of Commerce and U.S. 

Department of Labor................................................... 28 
c.   U.S. Department of Defense....................................... 28 
d.   Alliance for Excellent Education ............................... 29 

2.   Data File Merging................................................................... 30 
C. DATA AUDITING ............................................................................... 30 

APPENDIX C.   MODELING RESULTS............................................................ 31 
A. REGRESSION:  ENTER .................................................................... 31 
B. REGRESSION:  FORWARDS, BACKWARDS, AND STEPWISE .... 32 
C.   TREE:  C&RT..................................................................................... 33 
D.  TREE:  CHAID ................................................................................... 34 
E. TREE: EXHAUSTIVE CHAID ............................................................ 36 
F. NEURAL NETWORK:  QUICK .......................................................... 38 
G.  NEURAL NETWORK:  DYNAMIC ..................................................... 38 
H. NEURAL NETWORK:  PRUNE ......................................................... 39 
I. NEURAL NETWORK:  MULTIPLE.................................................... 39 
J.   NEURAL NETWORK:  RPFN ............................................................ 40 
K.  NEURAL NETWORK:  EXHAUSTIVE PRUNE ................................. 40 

LIST OF REFERENCES.......................................................................................... 41 

INITIAL DISTRIBUTION LIST ................................................................................. 43 

 



 ix

LIST OF TABLES 

Table 1. Mean Absolute Error Table................................................................. 14 
Table 2. Variables Ranked by Importance ....................................................... 16 
Table 3. Description of Variables...................................................................... 21 
Table 4. Regression: Enter Model Results ....................................................... 31 
Table 5. Regression: Variable Selection Models Results ................................. 32 
Table 6. Tree: C&RT Model Results................................................................. 33 
Table 7. Tree: CHAID Model Results ............................................................... 35 
Table 8. Tree: Exhaustive CHAID Model Results............................................. 37 
Table 9. Neural Network: Quick Model Results ................................................ 38 
Table 10. Neural Network: Dynamic Model Results ........................................... 38 
Table 11. Neural Network: Prune Model Results................................................ 39 
Table 12. Neural Network: Multiple Model Results............................................. 39 
Table 13. Neural Network: RPFN Model Results ............................................... 40 
Table 14. Neural Network: Exhaustive Prune Model Results ............................. 40 
 



 x

THIS PAGE INTENTIONALLY LEFT BLANK 



 xi

EXECUTIVE SUMMARY 

The purpose of this study was to build a model that accurately predicts the 

number of high-quality male Navy enlistments at the Navy Recruiting Station 

(NRS) level.  This study also sought to explore the relationship between military 

installation proximity and high-quality male Navy enlistments and between 

various measures of public high school quality and high-quality male Navy 

enlistments.  

This study aggregated zip code and county level data from several 

different sources to the NRS level.  The number of males with Armed Forces 

Qualification Test (AFQT) scores at 50 or above who joined the Navy’s delayed 

entry program (DEP) as determined from Defense Manpower Data Center 

(DMDC) data was used as the response variable.  Population data provided by 

Woods & Poole Economics, veteran population data derived from the 2000 

Census, the number of recruiters per NRS supplied by Navy Recruiting 

Command (CNRC), unemployment data downloaded from the Department of 

Labor, income data gathered from the Department of Commerce, and public high 

school data retrieved from the Department of Education was used to develop 

models and relationships in this study.  

Through the use of regression trees, ordinary least squares multiple linear 

regression models, and neural networks, the study concluded that NRSs closer 

to larger navy installations produced higher numbers of high-quality male 

enlistments.  Additionally, NRSs whose territories have higher student-to-teacher 

ratios, lower “Promoting Power” scores (a measure of high school graduation 

rates), and lower percentages of students on subsidized lunches produce greater 

numbers of high-quality male enlistments rates.  This study also concluded that 

neural network models outperform both regression and tree models in predicting 

high-quality male Navy enlistments at the NRS level.   
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I. INTRODUCTION  

In the 21st Century, our most sophisticated weapon system is the 
human brain, and our most powerful advantage is our people.  
Today, and in future operations, people provide the margin of 
performance that determines who wins or loses, succeeds or fails, 
in pursuit of vital national interests.1 

— Department of the Navy, Human Capital Strategy 2007 
 

As stated in the quotation, people are the most important component of 

the United States Navy.  In order for the Navy to achieve the level of 

performance necessary to succeed, it must bring in the best people in sufficient 

numbers.  Navy Recruiting Command (CNRC) is responsible for recruiting the 

necessary 51,997 people into the Navy for Fiscal Year (FY) 2008.2   

 CNRC employs nearly 7,200 military and civilian personnel dispersed 

throughout the United States and abroad to fill the ranks of the Navy.  CNRC has 

organized these personnel into a single headquarters, two regions, twenty-six 

districts (NRDs), and over 1,500 stations (NRSs).  Territory is uniquely assigned 

by zip code to each NRS.3 

 Since CNRC has limited resources at its disposal to achieve its assigned 

mission, it must allocate its resources wisely.  CNRC’s most important resource 

is its recruiters.  Accordingly, the locations to which they are assigned must be 

carefully chosen; they should be assigned to areas where the active-duty 

enlistment4 supply is the greatest.   

                                            
1 U.S. Department of the Navy, Human Capital Strategy 2007: Building and Managing the 

Total Naval Force, Office of the Secretary of the Navy,  5. 
2 Navy Recruiting Command Public Affairs Office, “2008 Facts and Stats,” Navy Recruiting 

Command, http://www.cnrc.navy.mil/PAO/facts_stats.htm (accessed May 9, 2008). 
3 Navy Recruiting Command Public Affairs Office, “2008 Facts and Stats,” Navy Recruiting 

Command, http://www.cnrc.navy.mil/PAO/facts_stats.htm (accessed May 9, 2008). 
4 Active duty enlistment supply is specifically referred to here because the FY08 demand is 

39,000, comprising 75% of total FY08 demand.  Traditionally, recruiters and NRSs have been 
allocated based on the active duty enlisted market. 
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 As many econometric studies have shown, many factors affect the supply 

of people willing to enlist into the United States Navy.  Some relevant factors are: 

• Number of recruiters; 

• Advertising; 

• Unemployment rate; 

• Per capita income; 

• Military pay; and 

• Population. 

Econometric theory postulates that localities should produce varying levels of 

enlistment supply in accordance with their values of the factors listed above.  

Accordingly, many models have been produced and tested with actual data.  The 

results have generally supported the theory, but many variables have appeared 

to be extraneous. 

 One purpose of this study is to explore how proximity to a military 

installation, a factor that has not been addressed in previous studies, affects local 

enlistment supply.  People who reside near a military facility likely view the 

military differently than those who do not.  This proximity is likely to affect the 

amount of information available about military service, the perceived risks 

associated with military service, and the perceived rewards afforded to those in 

military service. 

 A second purpose of this study is to explore the how various measures of 

high school quality affect local enlistment supply.  Since high schools provide the 

largest single source for navy enlisted applicants, the quality of the high schools 

in an NRS’s territory should affect the quantity of high-quality applicants that join 

the Navy. 

 Additionally, this study seeks to explore the variables used in previous 

econometric studies as well as proximity to a military installation to produce a 
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model to predict enlistment supply at the NRS level.  This study seeks to develop 

the model with the highest predictive power.  The results of this study should 

directly benefit CNRC in allocation of recruiting resources and in generating 

realistic expectations for NRS production.    
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II. LITERATURE REVIEW 

A. ENLISTMENT SUPPLY AT THE LOCAL MARKET LEVEL 

  Hogan et al. developed regression models to analyze enlistment supply at 

the zip code level. The authors used data from Army and Navy databases from 

FY 1994 to FY 1997 and data from the 1990 Census to estimate the parameters.  

For the recruiting station level model, the study used a log-log regression model 

and found that increasing the number of recruiters in a station was associated 

with an increase in the number of high-quality enlistments.  Additionally, the 

authors posed several areas for future research.  Specifically, they asked, “Does 

proximity to a military installation affect recruiting?  If so, does it matter which 

service is located at the installation?”5 

B. ANALYZING THE ASSIGNMENT OF ENLISTED RECRUITING GOAL 
SHARES VIA THE NAVY’S ENLISTED GOALING AND FORECASTING 
MODEL 

 In his thesis, Hojnowski provided an in-depth explanation of CNRC’s 

active-duty enlisted goaling model, discussed the goaling model’s performance 

versus actual production, and proposed adjustments to the model that may 

improve the accuracy of its predictions.  The author explained that CNRC’s 

goaling model is an econometric supply model that uses a fixed-effect, 

autoregressive estimator to predict high-quality male navy enlistments at the 

NRD level.  Specific data sources used in estimating CNRC’s model are not 

discussed.  According to the author, some of the most important factors, based 

only on coefficients, are the number of recruiters, high quality-male population, 

low-quality male population, unemployment rate, and relative earnings.6   

                                            
5 Paul F. Hogan et al., “Enlistment Supply at the Local Market Level,” (Technical Report 

NPS-SM-00-004, Naval Postgraduate School), 9-33. 
6 Ronald A. Hojnowski, “Analyzing the Assignment of Enlisted Recruiting Goal Shares Via the 

Navy’s Enlisted Goaling and Forecasting Model,” (Master’s Thesis, Naval Postgraduate School, 
2005), 35-40. 
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C. ALLOCATION OF RECRUITING RESOURCES ACROSS NAVY 
RECRUITING STATIONS AND METROPOLITAN AREAS 

 In their thesis, Jarosz and Stephens developed regression models for 

contract production at both recruiting station and metropolitan levels to assist 

CNRC in allocating recruiter resources.  The parameters of the model were 

estimated using FY 1995 through FY 1997 data from U.S. Army Recruiting 

Command, CNRC, the Bureau of Labor Statistics, and the Census Bureau.  The 

authors estimated both linear and log-log models at the NRS level using 

regression.  The study explored how many different variables affected high-

quality Navy enlistments.  Of particular note, it showed that increasing the 

number of recruiters in a NRS generally led to an increase in high-quality 

enlistments.7   

D. A STATISTICAL ESTIMATION OF NAVY ENLISTMENT SUPPLY 
MODELS USING ZIP CODE LEVEL DATA 

 Hostetler’s thesis used Census Bureau data as well as FY 1996 zip code 

level data supplied by CNRC from its Standardized Territory Evaluation and 

Analysis for Management (STEAM) database to predict new contract production.  

The author developed a linear model and used the data to estimate the 

coefficients.  This study also explored the collinearity among the independent 

variables, since many of the population demographics proved to be highly 

collinear.  The author concluded that recruiter presence, a factor derived from 

number of recruiters in a station and the station’s associated population, was the 

most important factor in predicting new contracts.8   

                                            
7 Suzanne K. Jarosz and Elisabeth S. Stephens, “Allocation of Recruiting Resources Across 

Navy Recruiting Stations and Metropolitan Areas,” (Master’s Thesis, Naval Postgraduate School, 
1999), 2-54. 

8 David L. Hostetler, “A Statistical Estimation of Navy Enlistment Supply Models Using ZIP 
Code Level Data,” (Master’s Thesis, Naval Postgraduate School, 1998), 13-33. 
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E. PREDICTING THE NUMBER OF POTENTIAL MILITARY RECRUITS 
OVER THE NEXT TEN YEARS WITH APPLICATION TO RECRUITER 
PLACEMENT 

Britton’s thesis used zip code level data supplied by CNRC from July 2001 

to June 2007 and DMDC data from FY 1998 to FY 2006 to evaluate CNRC’s 

recruiter placement.  This study assigned Navy applicants to categories based on 

demographics.  The study then determined the ratio of applicants to general 

population for each demographic category.  These ratios were then applied to 

each zip code to predict how many applicants it should have produced.  By 

comparing the predicted value to the actual value, the study was able to estimate 

the propensity of a given zip code’s population to enlist into the Navy.  Through 

the same techniques, the study was able to provide propensities for various 

aggregates, e.g., NRS, NRD, Regional, and National.9   

 

                                            
9 Donald L. Britton, “Predicting the Number of Potential Military Recruits Over the Next Ten 

years with Application to Recruiter Placement,” (Master’s Thesis, Naval Postgraduate School, 
September 2007), xv-15. 
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III. MODELS 

Three general model types were chosen to predict high-quality male Navy 

enlistments:  ordinary least squares multiple linear regression models, regression 

trees, and neural networks.  These models were chosen because they allow for 

numerical response variables and because they are available in many software 

packages.  All models used in this study were built using the data-mining 

software package SPSS Clementine 11.1.  The names of the models below were 

based on the model selected in Clementine along with the particular settings 

chosen.  For all models in this study, the response variable was the number of 

males with Armed Forces Qualification Test (AFQT) scores fifty or higher who 

entered the Navy’s DEP.  The full set of predictor variables was provided to each 

modeling tool as input.  The algorithms for each model chose the variables to 

retain and their relative importance.  Table 3 in Appendix A lists all variables 

derived as described in Appendix B.  All variables in Appendix A, Table 3, except 

for the number of high-quality males (MU), recruiting station identification number 

(RSID), and the year, were used as predictor variables.  The data from years 

2002-2005 were used for training and the data from 2006 were used for testing.  

This training set and test set were chosen to provide a prediction environment 

similar to one that CNRC would experience in predicting the following fiscal 

year’s enlistment supply. 

A. REGRESSION10 

Regression models comprised four of the five models in this study’s 

literature review and are often used to gain insight into relationships between 

response variables and predictor variables.  All of the regression models that  

                                            
10 Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining, Introduction to Linear 

Regression Analysis (New York: John Wiley and Sons, Inc., 2004),  6. 
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were used in this study were ordinary least squares multiple linear regression 

models.  The four models differ by the variable selection process, as described 

below. 

1. Enter11 

Here, “enter” refers to the variable selection option in the regression model 

in Clementine and designates that all variables were used—this is the full model.   

2. Forwards12 

The forward selection model begins with the simplest model—no predictor 

variables.  Predictor variables are then added to the model if they improve the 

model.  The predictor that improves the model the best is added in each step.    

The minimum requirement for variable entry was that the p-value associated with 

the F-statistic must be greater than 0.05. 

3. Backwards13 

Backwards elimination begins with the full model and then selects 

variables to remove at each step by removing the variable with the least 

statistical significance.  This continues until all the variables that remain are 

statistically significant.  Variable selection was complete when no variables 

remaining in the model had associated p-values greater than 0.1. 

4. Stepwise14 

Stepwise selection is the same as the forward selection model except that 

in each step, after a variable is added, the model is reevaluated to see if any 

variable currently in the model has become statistically insignificant.  If so, one of 

                                            
11 Montgomery et al, 302. 
12 Montgomery et al, 310. 
13 Montgomery et al, 312. 
14 Montgomery et al, 314. 
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them is removed.  Variables became candidates for removal when their 

associated p-values became greater than 0.1.  The minimum requirement for 

variable entry was that the associated p-value must be greater than 0.05. 

B. TREE15 

Trees are produced by dividing data into sets that are more similar than 

they were before being divided.  The splits that produced the highest degree of 

similarity are chosen.  This process continues on each set that is produced until 

some stopping criteria are met.  The three models below are differentiated by the 

number of splits allowed at each node and the method for finding optimal splits. 

1. Tree:  C&RT16 

C&RT stands for Classification and Regression Tree.  Since the response 

variable used in this study is continuous, this model specifically used the 

regression tree component of the algorithm.  C&RT allows only binary splits at 

each node.  For this model, default settings were used.  Specifically, the Gini 

impurity method was used to measure similarity, the minimum change in impurity 

allowed was 0.0001, only five levels below the root were allowed, and the 

pruning option was selected. 

2. Tree:  CHAID17 

CHAID stands for Chi-Squared Automatic Interaction Detector.  CHAID is 

similar to C&RT, but it allows more than one split at each node (i.e., the tree is 

not required to be binary).  Clementine 11.1 default settings were used. 

                                            
15 Montgomery et al, 516. 
16 Montgomery et al, 516. 
17 Clementine 11.1 Algorithms Guide (United States of America: Integral Solutions Limited, 

2007), 44. 
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3. Tree:  Exhaustive CHAID18 

Exhaustive CHAID is a modification to the CHAID algorithm that overcomes 

CHAID’s occasional inability to find the optimal split19.  This results in longer 

computation times.  Clementine 11.1 default settings were used. 

C. NEURAL NETWORK20 

A neural network is a statistical model that employs a network of 

interconnected weighting factors to convert input values into output values.  The 

model uses the various predictor values and their associated response values to 

adjust the weights until the predicted response values are similar to the actual 

response values.  Neural networks can provide good predictions, but do not normally 

provide insight into relationships between predictor variables and response 

variables.  The six neural network models used in this study were the basic 

algorithms selectable in Clementine:  Quick, Dynamic, Prune, Multiple, RBFN, and 

Exhaustive Prune.  The quick method creates a network structure based on rules of 

thumb and data characteristics.  The dynamic method creates a network structure 

similar to the quick method, but it allows the structure to be modified during training.  

The prune method begins with a large network and removes weak connections 

during training.  The multiple method creates multiple networks with different 

structures and trains each of them.  The model with the lowest error is selected.  

RBFN stands for Radial Basis Function Network and this method uses a clustering 

algorithm to aid in developing the network and to determine weighting factors.  The 

exhaustive prune method is similar to the prune method but uses more thorough 

search techniques to find the weakest connections.  For each neural network model, 

Clementine 11.1 default settings were used.21 

                                            
18 Clementine 11.1 Algorithms Guide, 44. 
19 Details on the weaknesses and how they are overcome can be found in Clementine 11.1 

Algorithms Guide on pages 44-52. 
20 Montgomery et al, 518. 
21 Clementine 11.1 Algorithms Guide, 1-13. 
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IV. RESULTS AND CONCLUSIONS 

A. RESULTS 

1. Prediction Models 

After the models were built using the 2002-2005 data, they were then 

used to predict the number of high-quality male enlistments for 2006.  These 

predicted values were then compared to the actual values for 2006.  The mean 

absolute errors were then calculated for each model.    Three of the regression 

variable selection algorithms, forward selection, backwards elimination, and 

stepwise regression, produced the same mean absolute errors.  This was due to 

the fact that in this study each method of variable selection technique ultimately 

resulted in the same model.22  Surprisingly, the neural network models 

consistently outperformed both the regression and tree models.  This was not 

expected at the outset of this study, as regression models have traditionally been 

used to predict enlistment supply.  The regression models performed almost as 

well as the neural network models and much better than the tree models.  Table 

1 contains the mean absolute errors for each model.  More detailed results are 

contained in Appendix C. 

 

                                            
22 These variable selection techniques, in general, may or may not lead to different models. 
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General Model 
Type 

Specific Model 
Type 

Mean Absolute 
Error  (number of 
high‐quality males 
joining the Navy’s 
DEP per NRS per 
year) 

        

Neural Network  Quick  6.194 
   Dynamic  6.126 
   Prune  5.845 
   Multiple  6.010 
   RBFN  7.141 

   Exhaustive Prune  5.944 
        

Tree  C & RT  6.765 
   CHAID   6.901 

   CHAID Exhaustive  6.734 
        

Regression  Enter  6.141 
   Forwards  6.142 
   Backwards  6.142 

   Stepwise  6.142 

Table 1.   Mean Absolute Error Table 

 

2. Variables 

a. Importance 

In order to determine which factors were the most important, each 

variable was ranked, if possible, as to the order of importance in each model.  For 

the regression models determined by the forward selection technique and the 

stepwise techniques, the rank was determined by the entering order.  The results of 

the full regression model and regression model determined by the backwards 
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elimination technique were not used in ranking the variables.23  For the trees, the 

rank assigned was according to the level for which the variable was used as a split.  

For neural network models, the relative importance level as determined by 

Clementine’s sensitivity analysis served as the rank.24  Except for the full regression 

model and the regression model determined by the backwards elimination 

technique, the average rank was computed across all models and used for 

comparison.   

By this metric, the number of recruiters per station, the 17-19 year old 

male population, the number of houses, and the veteran percentage proved to be 

the most important variables.  The results of this analysis are listed in Table 2. 

Table 2 also shows which variables were not included in some of the 

models.  There were only eight variables that were retained by all of the models in 

this study.  Those were the four listed above along with the percentage of students 

receiving subsidized lunches, the land area, the proximity to Navy installations 

factor, and per capita income.   

Of the four most important variables, only the number of housing units 

(House) was surprising.  The number of recruiters per station, the number of 17- to 

19-year-old males, and the veteran population percentage were all used in the in 

various models covered in the literature review.  Initially, the number of housing units 

may not appear to be a logical predictor of high-quality Navy enlistments.  However, 

the number of housing units may serve as an interaction term between population 

and income level.  This may be a worthwhile area for future research. 

Each factor, student-to-teacher ratio, subsidized lunches, 

Promoting Power, and proximity to Navy installations, was identified by at least 

one measure to be important in predicting high-quality male Navy enlistment 

supply.  Subsidized lunches and Navy installation proximity proved significant by 

                                            
23 The full model and the backwards elimination model do not provide any real insight into 

variable importance beyond whether their inclusion is statistically significant.  Further, the 
backwards model contains the same variables as the forwards and stepwise models.  Therefore, 
it is not necessary for the inclusion/ exclusion analysis either. 

24 Clementine 11.1 Algorithms Guide, 11.  
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being ranked sixth and eighth in importance, as calculated by the average rank 

metric, and by being included in every model.  The variable selection process for 

regression chose Promoting Power scores and student-to-teacher ratios as 

important in predicting high-quality Navy enlistment supply.  Demonstrating the 

importance of these variables allowed for meaningful exploration of their 

relationships in the next section.  

 

Table 2.   Variables Ranked by Importance 
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b. Relationships 

This study’s regression model, as determined by the stepwise 

selection technique, was used to evaluate relationships between predictor 

variables and the response variables.  In general, the relationships established in 

this study between predictor variables and the response variable appeared 

logical and were in agreement with those in the literature review. The 

relationships of the military proximity variable and school quality variables with 

high-quality male Navy enlistments are detailed below.   

(1) Student-to-teacher Ratio.  The student-to-teacher 

ratio (STRatio) was statistically significant in this model and had a positive 

regression coefficient.  Thus, as the student-to-teacher ratio increases, the 

predicted number of high-quality male Navy enlistments tends to also increase 

for an NRS.  At first, this result seemed rather counter-intuitive because high 

student-to-teacher ratios are often associated with lower-quality schools.  

However, a strong relationship may exist between very small class sizes and 

very high college enrollment rates.  Assuming this increase in college enrollment 

results in fewer enlistments into the Navy, an increased student-to-teacher ratio 

would then be serving as a proxy for reduced college enrollment rates.  Further 

examination as to why an increase in student-to-teacher ratios results in an 

increase in high-quality male Navy enlistments is an area for future research. 

(2)  Promoting Power Score.  The Promoting Power 

scores (Score), indicators of high school graduation rates, were statistically 

significant in this model and had a negative regression coefficient.  Thus, as the 

Promoting Power score increases, the predicted number of high-quality male 

Navy enlistments tends to decrease for an NRS.  As with the result for student-

to-teacher ratios, this result initially appears to be unexpected.  Higher graduation 

rates have generally been associated with higher school quality and, therefore, 

should yield more high-quality enlistments.  Again, very high graduation rates 

could be indicative of very high college enrollment rates causing a decrease in 

the number of Navy enlistments.   
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 (3) Subsidized Lunches.  The percentage of students 

receiving subsidized lunches (SubLunch) was statistically significant in this model 

and had a negative regression coefficient.  Thus, as the percentage of students 

receiving subsidized lunches increases, the predicted number of high-quality 

male Navy enlistments tends to decrease for an NRS.  Here, if subsidized 

lunches are a true indicator of the quality of education, then this result seems 

reasonable.  Since subsidized lunches are directly based off of income level, one 

might also expect that increasing the percentage of students receiving subsidized 

lunches and the associated decrease in the local civilian pay to military pay ratio 

might increase the number of high-quality enlistments.  Of the metrics related to 

high school, the percentage of students receiving subsidized lunches ranked as 

most important and provided the expected relationship between high school 

quality and the number of high-quality male Navy enlistments. 

 (4) Proximity to Navy Installations.  As expected, the ratio 

of Navy installation personnel to the distance between the Navy installation and 

the NRS (Navy_P_D_largest) was statistically significant in this model and had a 

positive regression coefficient.  Thus, as the personnel to proximity ratio 

increases, the predicted number of high-quality male Navy enlistments tends to 

also increase for an NRS.  

B. CONCLUSIONS 

The purpose of this study was to build predictive models, to explore the 

relationship between military installation proximity and high-quality male Navy 

enlistments, and to explore the relationships between various high school quality 

factors and high-quality male Navy enlistments. Through comparing the mean 

absolute errors between predicted and actual results, the neural network models 

outperformed both regression and tree models.  The study also showed that 

Navy installation proximity and various measures of high school quality are 

significant in predicting the number of high-quality male Navy enlistments.  

Furthermore, the study verified that the number of high-quality male Navy 
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enlistments was larger for an NRS when the distance between an NRS and a 

Navy installation was small and when the population of a nearby Navy installation 

was large.  The number of high-quality male Navy enlistments was higher for an 

NRS when the NRS’s territory contained public high schools with higher student-

to-teacher ratios, lower graduation rates (as demonstrated by Promoting Power 

scores), and fewer students receiving subsidized lunches. 

This study indicated that CNRC may be able to develop better enlistment 

production forecasts and associated recruiter assignment models by using neural 

network models to supplement their regression based models.  Also, the 

accuracy of their models may be improved by incorporating proximities to military 

installations as well as measures of high-school quality.   

Future studies may increase the fidelity of the predictions as well as the 

relationships between the predictor variables and response variable by improving 

on the data set used in this study.  Specifically, zip code level data with annual 

measurements should be used for all records and fields.  Additionally, such 

factors as distances between NRSs and Military Entrance Processing Stations 

(MEPSs), distances between NRSs and the NRD headquarters, types and 

numbers of colleges and universities, and the number of Junior Reserve Officers 

Training Corps (JROTC) units should be explored in enlistment supply models in 

future studies.  Finally, further research should be conducted in order to validate 

the relationships between the number of housing units and the number of high-

quality male Navy enlistments and between high school quality and the number 

of high-quality male Navy enlistments and to further elucidate the underlying 

reasons for those relationships. 
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APPENDIX A.  VARIABLE DESCRIPTIONS 

 

Variable Name  Variable Description  Data Source 
AvgDis  Average distance from centroid of an NRS's zip code to the centroid of 

each zip code that that NRS's area of responsibility. 

Calculation 

HS 
Number of high schools in an NRS's area of responsibility. 

Census 2000 

House 
Number of housing units in an NRS's area of responsibility. 

Census 2000 

LArea 
Land area in square miles in an NRS's area of responsibility. 

Census 2000 

M17 
Number of males age 17‐19 in an NRS's area of responsibility. 

Woods and Poole 

M17_25  Number of males age 17‐19 within zip codes whose centroid is within 25 
miles of an NRS's zip code's centroid. 

Woods and Poole 

M20 
Number of males age 20‐24 in an NRS's area of responsibility. 

Woods and Poole 

M20_25  Number of males age 20‐24 within zip codes whose centroid is within 25 
miles of an NRS's zip code's centroid. 

Woods and Poole 

MU  Number of males with an AFQT score 50 or higher who joined the Navy's 
DEP. 

CNRC 

Navy_P_D_largest  The largest value of (number of people)/(distance + 1) representing an 
NRS's proximity to a Navy installation and the distance from that 
installation based on population categories. 

Base Status Report 

Non_Navy_P_D_largest  The largest value of (number of people)/(distance + 1) representing an 
NRS's proximity to a Non‐Navy installation and the distance from that 
installation based on population categories. 

Base Status Report 

PerCapB 
Per capita income within an NRS's area of responsibility. 

Department of Labor 

RPS 
Average number of recruiters assigned to an NRS. 

CNRC 

RSID 
Recruiting station identification number assigned to an NRS. 

CNRC 

Score  "Promoting Power" score representing the public high school graduation 
rate in an NRS's area of responsibility. 

Alliance for Excellent Education 

STRatio  Student to teacher ratio for public high schools in an NRS's area of 
responsibility. 

Department of Education 

SubLunch  Percentage of public high school students receiving reduced or free 
lunches in an NRS's area of responsibility. 

Department of Education 

UnempB 
The unemployment rate in an NRS's area of responsibility. 

Department of Labor 

VetPer  Percentage of the population in an NRS's area of responsibility that are 
military veterans. 

Census 2000 

WArea 
Water area in square miles in an NRS's area of responsibility. 

Census 2000 

Year 
Fiscal Year from which data was produced. 

Census 2000 

Table 3.   Description of Variables 
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APPENDIX B. DATA 

A. DATA SOURCES 

1. CNRC 

CNRC provided several sources of data to Britton for use in his thesis25.  

This data, with considerable amounts of pre-processing performed on it, was 

made available for follow-on theses.  

a.   Woods and Poole Economics, Inc. 

 CNRC provided Britton population data from Woods and Poole 

Economics, Inc., “an independent firm that specializes in long-term county 

economic and demographic projections.”26  This data contained population 

counts categorized by age, gender, race, and education level for each county 

and zip code in the United States.  There were three datasets provided: 

documented residence status, undocumented residence status, and total 

population.  Each dataset contained 29,583,180 records with 29 fields. 

b. Zip Code and FIPS Mapping to Recruiting Stations 

 CNRC provided Britton a file containing 41,400 zip codes mapped 

to their associated Federal Information Processing Standards (FIPS) code and 

local NRS.  Each NRS is identified by a unique recruiting station identification 

number (RSID).  This file was important, as zip codes, FIPS codes, and RSIDs 

were used as keys to merge files and aggregate data.   

                                            
25 Britton. 
26 Woods & Poole Economics,  “Woods & Poole Economics, Washington, D.C.: County 

Forecasts to 2030,” Woods & Poole Economics, http://www.woodsandpoole.com/ (accessed May 
25, 2008). 
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c.  Latitude and Longitude for Each Zip Code 

CNRC provided Britton a flat file containing the latitude and 

longitude of the centroid for 41,520 zip codes.  This file was used for calculating 

distances between zip codes.   

d.  Navy Recruiting Station Manning Levels 

 CNRC provided Britton a file containing specific recruiter 

information such as report date, transfer date, and the recruiting station 

assignment.  Through processing by Britton, this file provided average annual 

recruiter manning levels for 1051 NRSs identified by RSID for 2001 through 

2007.   

e.   Census Data 

 CNRC provided Britton a file containing data from the 2000 

Census.  The data provided included land area in square miles, water area in 

square miles, the number of public high schools, and the number of houses for 

each zip code.   

2.   Defense Manpower Data Center (DMDC) 

DMDC, the Department of Defense’s source for human resource 

information, provided to Britton a data set consisting of military service applicants 

from FY 1998 through FY 2006.  This file contained applicant information such as 

Armed Forces Qualification Test (AFQT) scores, gender, age, race, home of 

record zip code, Delayed Entry Program (DEP) entry date, and DEP service for 

every component (active, reserve, and guard) of each service (Air Force, Army, 

Coast Guard, Marine Corps, and Navy).  This data set contained 18 fields and 

4,296,409 records.   



 25

3.  U.S. Census Bureau 

Three data files containing unemployment information, veteran 

populations, and per capita income were downloaded from the U.S. Census 

Bureau’s Download Center.27  The data came from Summary File 3 of the 2000 

U.S. Census.  Each data file contained nearly 32,000 zip code tabulation areas 

(ZCTA) which approximate the geographic delivery areas for U.S. Postal Service 

zip codes.  The number of ZCTAs available in each Census file is about 10,000 

fewer than the number of zip codes provided in CNRCs zip code file.  This is due 

to the fact that the Census Bureau assigns three-digit ZCTAs to large contiguous 

areas for which it does not have five-digit zip code information available.  The per 

capita income comprised five fields:  zip codes, per capita incomes, and three 

geographic identifiers.  The veteran population file consisted of 27 fields broken 

down by sex and age.  The file containing unemployment information was 

arranged in 19 fields and consisted of population counts and the number of 

unemployed persons for various demographic segments.   

4.  U.S. Department of Commerce 

Annual county-level per capita income and population files were provided 

via download from the U.S. Department of Commerce’s Bureau of Economic 

Analysis Website.28  The data consisted of per capita incomes and populations 

for 3133 counties for each year from 2002 through 2006.  Counties were 

identified via FIPS codes.   

                                            
27 U.S. Census Bureau, “U.S. Census Bureau: American Fact Finder,” U.S. Census Bureau, 

http://factfinder.census.gov/servlet/DCGeoSelectServlet?ds_name=DEC_2000_SF3_U 
(accessed May 19, 2008). 

28 U.S. Department of Commerce Bureau of Economic Analysis, “Bureau of Economic 
Analysis: Regional Economic Accounts,” U.S. Department of Commerce, 
http://www.bea.gov/regional/reis/ (accessed May 19, 3008). 
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5.  U.S. Department of Labor 

Annual county-level unemployment files were provided via download from 

the U.S. Department of Labor’s Bureau of Labor Statistics Website.29  Five files 

were downloaded, one for each year from 2002-2006.  Each file contained the 

number of people in the labor force, number of people employed, and number of 

people unemployed for 3224 counties.  Each of the files used identical formats.   

6.   U.S. Department of Defense 

An Excel file containing military installation data was extracted from an 

Adobe Portable Document Format (pdf) copy of the Department of Defense’s 

Base Structure Report (BSR): Fiscal Year 2003 Baseline.30  The data consisted 

of Total Replacement Value (PRV), total number of personnel authorized for the 

site, primary component owner of the site, and site zip code for 1,132 military 

sites.  

7.   U.S. Department of Education 

Files containing information about U.S. public high schools were 

downloaded from the U.S. Department of Education’s National Center for 

Education Statistics Website.31  Fifty-one data files (one for each state plus 

Washington, D.C.) were downloaded; each contained 37 fields covering 18,180 

high schools.  The data was gathered from the 2005-2006 school year.  Among  

 

 

                                            
29 U.S. Department of Labor Bureau of Labor Statistics, “U.S. Department of Labor Bureau of 

Labor Statistics: Local Area Unemployment Statistics,”  U.S. Department of Labor, 
http://www.bls.gov/lau/ (accessed May 7, 2008). 

30 U.S. Department of Defense, Department of Defense, Base Structure Report (A Summary 
of DoD’s Real Property Inventory):  Fiscal Year 2003 Baseline, Office of the Deputy Under 
Secretary of Defense, Installations and Environment. 

31 U.S. Department of Education Institute of Education Sciences National Center for 
Education Statistics, “IES National Center for Education Statistics:  Search for Public Schools,” 
U.S. Department of Education, http://nces.ed.gov/ccd/schoolsearch/ (accessed on May 19, 2008). 
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the fields were the number of students, the number of teachers, the number of 

students receiving free lunches, and the number of students receiving reduced 

lunches.   

8.   Alliance for Excellent Education 

Due to the multiple ways that public high school graduation rates are 

calculated, a consistent indicator of graduation rates is necessary.   Researchers 

at Johns Hopkins University have created an indicator for high school graduation 

rates called “Promoting Power.”  This statistic compares the number of seniors in 

a high school to the number of ninth-graders enrolled in the high school three 

years earlier.  Fifty-one files, one for each state and Washington, D.C., were 

downloaded from Alliance for Excellent Education’s Website.32  Each file 

contained “Promoting Power” scores for public high schools for 2004, 2005, and 

2006.  A total of 15,208 records were contained in the downloaded files.   

B. DATA PREPARATION 

1.  Individual Data File Preparation 

The data files were modified to produce fields (columns) for each desired 

variable and to produce records (rows) for each NRS and year combination.  

Most files required only minor modification, mapping zip codes to NRSs and then 

summing up the fields for each aggregated NRS and zip code combination.  The 

county level data required FIPS codes as keys to be mapped to NRSs.  Some 

counties, however, were mapped to multiple NRSs potentially introducing error 

into the data.  Additionally, some data sources did not contain data for each year 

covered in this study, so imputation was necessary.  The data that did not  

 

                                            
32 Alliance for Excellent Education, “High Schools in the United States: How Does Your Local 

High School Measure Up?”  Alliance for Excellent Education, 
http://www.all4ed.org/about_the_crisis/schools/state_and_local_info/promotingpower (accessed 
on May 13, 2008). 
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conform to time periods or the geographic boundaries of this study, but were 

used due to availability, and the manipulations performed on them are listed 

below. 

a.  U.S. Census Bureau 

 U.S. Census Bureau data was provided for each zip code, but only 

for a single year.  Per capita income, veteran population, and unemployment 

data were from the 2000 Census was used as a constant value for 2002, 2003, 

etc. An average weighted by population was used to aggregate per capita 

income from a zip code level to an NRS level.   

b.  U.S. Department of Commerce and U.S. Department of 
Labor 

 The per capita income data provided by the U.S. Department of 

Commerce and the unemployment data provided by the U.S. Department of 

Labor were provided for each year, but they were provided only at the county 

level.  During aggregation, the unemployment data were summed, and a 

weighted average was taken of per capita income.  However, since county 

boundaries and NRS boundaries do not always coincide, it was not possible to 

equitably divide and weight the data during aggregation to the NRS level.33  This 

causes some NRSs to potentially have overly inflated or deflated per capita 

incomes and unemployment rates. 

c.   U.S. Department of Defense 

Records from the BSR data file with empty zip code or total 

personnel fields were removed from the file.  Latitude and longitude fields were 

then merged with the military installation file with zip codes used as the merge 

key.  The distance between each NRS and each military installation was then 

calculated using latitudes and longitudes of the associated zip codes.  The 

                                            
33 Approximately 26% of the counties mapped to multiple NRSs. 
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closest Navy installation and non-Navy installation were identified for five 

different installation sizes based on number of authorized personnel:  greater 

than 100, 500, 1000, 2500, or 5000.   

In order to evaluate the factors of both proximity and number of 

personnel at the same time without masking effects from larger installations that 

might only be more distant by a few miles, a new factor was created.  The 

following calculation was performed for each combination of installation type 

(Navy and non-Navy) and installation size for each NRS:  

 
( )

number of authorized personnel
distance in miles from NRS + 1 mile

.34 

 
The largest value for a Navy installation and for a non-Navy installation were 
retained with the NRS and denoted as Navy_P_D_largest and 
Non_Navy_P_D_largest respectively. 

d.   Alliance for Excellent Education 

 The Alliance for Excellent Education provided “Promoting Power” 

scores and zip codes for each high school, but it did not provide associated high 

school populations.  Since there were no unique identifiers to pair up the 15,208 

public high schools with their populations, an unweighted average of the 

“Promoting Power” scores was calculated during aggregation to NRS levels.  

Additionally, only scores for 2004, 2005, and 2006 were provided and some of 

those scores were missing.  Any missing values of the 2004-2006 scores were 

filled with the average value of the provided scores for that high school.  The 

2002 and 2003 scores also had to be imputed.  The scores for 2002 and 2003 

were filled with the 2004 score. 

                                            
34 One mile was added to each distance in order to prevent division by zero for those NRSs 

that were located in the same ZIP code as the military installation.   
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2.   Data File Merging 

In order to efficiently import data into data analysis software, a single file 

was created containing all pertinent fields from the individual files and records for 

each NRS and year.  NRS RSIDs and years were used as the merge keys.  Only 

records with keys common to all data sets were used for estimating parameters 

in this study. 

C. DATA AUDITING 

After the data files were merged into a single file, an audit of the data was 

performed.  The audit showed that the fields containing number of migrant 

students and the percentage of students receiving subsidized lunches contained 

several missing values.  The migrant student field contained a significant number 

of missing values and was removed from the data file, but all records were 

retained.  Of the 4,848 records, 224 contained missing values for percentage of 

students receiving subsidized lunches.  Analyzing the distribution of missing 

values for subsidized lunches indicated that they were not randomly distributed.  

Most of the missing values were in records form NRSs in Arizona, Nevada, 

Texas, Tennessee, and Wisconsin.  The concentration of missing values in 

specific geographic locations did cause some concern.  Since the percentage of 

students receiving subsidized lunches was an important variable to be studied 

and over 95% of the records contained valid values, this field was retained.  The 

224 records containing missing values were removed from the data set. 
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APPENDIX C.   MODELING RESULTS 

A. REGRESSION:  ENTER 

 

Variable Name  Beta Coefficients  P‐value 

(constant)  0.48800 0.848
M17  0.00740 0.000
M20  ‐0.00613 0.005
M17_25  ‐0.00159 0.326
M20_25  0.00343 0.139
PerCapB  ‐0.00013 0.000
UnempB  0.33300 0.005
VetPer  0.46700 0.000
Score  ‐0.03200 0.052
STRatio  0.22000 0.000
SubLunch  ‐0.13000 0.000
RPS  3.63100 0.000
HS  ‐0.00348 0.817
AvgDis  ‐0.00405 0.639
House  0.00002 0.000
LArea  0.00018 0.000
WArea  ‐0.00446 0.086
Navy_P_D_largest  0.00100 0.000

Non_Navy_P_D_largest  ‐0.00001 0.960

Table 4.   Regression: Enter Model Results 
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B. REGRESSION:  FORWARDS, BACKWARDS, AND STEPWISE 

 

Variable Name  Beta Coefficients  P‐value 

(constant)  0.55900 0.825
RPS  3.62800 0.000
M17  0.00595 0.000
VetPer  0.46500 0.000
SubLunch  ‐0.13000 0.000
Navy_P_D_largest  0.00101 0.000
M20  ‐0.00416 0.000
STRatio  0.22200 0.000
PerCapB  ‐0.00013 0.000
House  0.00002 0.000
LArea  0.00050 0.000
M20_25  0.00127 0.021
WArea  ‐0.00559 0.001
UnempB  0.32600 0.006

Score  ‐0.03270 0.043

Table 5.   Regression: Variable Selection Models Results 
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C.   TREE:  C&RT 

 

 

Table 6.   Tree: C&RT Model Results 



 34

D.  TREE:  CHAID 
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Table 7.   Tree: CHAID Model Results 
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E. TREE: EXHAUSTIVE CHAID 
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Table 8.   Tree: Exhaustive CHAID Model Results 
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F. NEURAL NETWORK:  QUICK 

 
 

Table 9.   Neural Network: Quick Model Results 

G.  NEURAL NETWORK:  DYNAMIC 

 
 

Table 10.   Neural Network: Dynamic Model Results 
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H. NEURAL NETWORK:  PRUNE 

 
 

Table 11.   Neural Network: Prune Model Results 

I. NEURAL NETWORK:  MULTIPLE 

 
 

Table 12.   Neural Network: Multiple Model Results 
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J.   NEURAL NETWORK:  RPFN 

 

 
 

Table 13.   Neural Network: RPFN Model Results 

K.  NEURAL NETWORK:  EXHAUSTIVE PRUNE 

 

Table 14.   Neural Network: Exhaustive Prune Model Results 
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